Synopsis of Original Research Paper

Studies on stabilization mechanisms of powdered emulsions and foams

Ryo Murakami

Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University

Colloidal particles can be irreversibly adsorbed at fluid interfaces, such as oil-water and air-water interfaces. The particle adsorption leads to stabilization of dispersed systems of two immiscible fluids and particle-stabilized, that is, Pickering-type emulsions and foams can be prepared. These materials show some unique properties as a result of adsorption of the particles at the fluid interface. One of the striking phenomena is that liquid drops can be dispersed in air with the liquid-air surfaces coated by liquid-repellent particles. When the liquid is water, a water-in-air material, named dry water, is produced by aerating water in the presence of extremely hydrophobic silica particles. The dry water is a free-flowing powder which can contain significant quantities of water as micron-sized drops. A powdered oilin-water (o/w) emulsion, that is, oil-in-water-in-air (o/w/a) material is a dispersed system in which the continuous phase of a particle-stabilized o/w emulsion is dispersed in air by encapsulating the water globules with hydrophobic particles. During their preparation, oil droplets in water globules are forced to move due to high-shear mixing, leading to creaming of the oil droplets and possible wetting of the oil droplets on the hydrophobic particles which induces destabilization. In order to prepare powdered o/w emulsions efficiently, the extent of creaming of the oil droplets has to be suppressed. We describe how to achieve this by mixing two oils of different density and prepare powdered o/w emulsions from oil mixtures exhibiting a decreasing density difference with water. As the extent of creaming is reduced, enhanced stabilization of the powdered emulsions occurs. By applying the strategy used to stabilize the powdered o/w emulsions, a powdered aqueous foam, that is, air-in-water-in-air (a/w/a) material can be prepared.